Back to Search
Start Over
Anti-derivable linear maps at zero on standard operator algebras.
- Source :
-
Acta Mathematica Hungarica . 6/1/2022, Vol. 167 Issue 1, p287-294. 8p. - Publication Year :
- 2022
-
Abstract
- Let X be a complex Banach space with dim X ≥ 2 , and A ⊆ B (X) be a standard operator algebra. We show that a linear mapping δ : A → A is anti-derivable at zero (i.e., x y = 0 in A implies y δ (x) + δ (y) x = 0 ) if and only if δ = 0 . [ABSTRACT FROM AUTHOR]
- Subjects :
- *OPERATOR algebras
*LINEAR operators
*BANACH spaces
*COMMERCIAL space ventures
Subjects
Details
- Language :
- English
- ISSN :
- 02365294
- Volume :
- 167
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Acta Mathematica Hungarica
- Publication Type :
- Academic Journal
- Accession number :
- 159196616
- Full Text :
- https://doi.org/10.1007/s10474-022-01243-0