Back to Search Start Over

Centrifuge modelling of monotonic and cyclic lateral responses of a hybrid monopile-bucket foundation for offshore wind turbines.

Authors :
Lai, Yongqing
Li, Wei
He, Ben
Wang, Lizhong
Xiong, Gen
Liu, Tao
Source :
Ocean Engineering. Sep2022, Vol. 260, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

Various hybrid systems combined with several foundation elements have been proposed to improve the lateral performance of monopiles. Among them, the hybrid monopile-bucket foundation which consists of a traditional monopile and a wide-shallow bucket has received more and more attention and has been used in offshore wind pilot projects for supporting OWTs. However, deep insights into its monotonic and cyclic responses are still lacking. This study aims to understand the monotonic load-bearing, the evolution of cumulative displacement, stiffness and bending moment of the hybrid foundation in soft clay. A series of centrifuge model tests were conducted to simulate a hybrid monopile-bucket foundation and a monopile subjected to lateral monotonic and multi-stage cyclic loading. The monopile with the identical pile diameter and embedded length is used as a benchmark. The experimental results show that by the addition of the bucket, the hybrid foundation shows a 30.1% increase in ultimate capacity. Compared to the monopile, the cumulative displacement, unloading stiffness and the growth of bending moment of the hybrid foundation during cyclic can be reduced by up to 25%, 30% and 35.3%, respectively, implying the effectiveness and superiority of the hybrid foundation. Apart from the centrifuge tests, supplementary three-dimensional finite element analyses have also been performed to reveal the bearing mechanism and the sharing ratios of external load and moment carried by the single pile and the bucket of the hybrid foundation. The test and numerical results presented in this study are expected to provide design references for further practical applications of the hybrid foundations. • The monotonic and cyclic responses of the innovative hybrid foundation are investigated through a series of centrifuge tests. • The responses of the hybrid foundation are compared with those of the monopile with identical pile diameter and embedded length. • The feasibility and effectiveness of the hybrid foundation in resisting lateral load have been demonstrated. • Load-bearing mechanism of the hybrid foundation has been revealed through numerical analysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00298018
Volume :
260
Database :
Academic Search Index
Journal :
Ocean Engineering
Publication Type :
Academic Journal
Accession number :
159031335
Full Text :
https://doi.org/10.1016/j.oceaneng.2022.111967