Back to Search Start Over

Interleukin-23 Mediates Osteoclastogenesis in Collagen-Induced Arthritis by Modulating MicroRNA-223.

Authors :
Chen, Shih-Yao
Tsai, Ting-Chien
Li, Yuan-Tsung
Ding, Yun-Chiao
Wang, Chung-Teng
Hsieh, Jeng-Long
Wu, Chao-Liang
Wu, Po-Ting
Shiau, Ai-Li
Source :
International Journal of Molecular Sciences. Sep2022, Vol. 23 Issue 17, p9718. 12p.
Publication Year :
2022

Abstract

Interleukin-23 (IL-23) plays a pivotal role in rheumatoid arthritis (RA). IL-23 and microRNA-223 (miR-223) are both up-regulated and mediate osteoclastogenesis in mice with collagen-induced arthritis (CIA). The aim of this study was to examine the association between IL-23 and miR-223 in contributing to osteoclastogenesis and arthritis. Levels of IL-23p19 in joints of mice with CIA were determined. Lentiviral vectors expressing short hairpin RNA (shRNA) targeting IL-23p19 and lisofylline (LSF) were injected intraperitoneally into arthritic mice. Bone marrow-derived macrophages (BMMs) were treated with signal transducers and activators of transcription 4 (STAT4) specific shRNA and miR-223 sponge carried by lentiviral vectors in response to IL-23 stimulation. Treatment responses were determined by evaluating arthritis scores and histopathology in vivo, and detecting osteoclast differentiation and miR-223 levels in vitro. The binding of STAT4 to the promoter region of primary miR-223 (pri-miR-223) was determined in the Raw264.7 cell line. IL-23p19 expression was increased in the synovium of mice with CIA. Silencing IL-23p19 and inhibiting STAT4 activity ameliorates arthritis by reducing miR-223 expression. BMMs from mice in which STAT4 and miR-223 were silenced showed decreased osteoclast differentiation in response to IL-23 stimulation. IL-23 treatment increased the expression of miR-223 and enhanced the binding of STAT4 to the promoter of pri-miR-223. This study is the first to demonstrate that IL-23 promotes osteoclastogenesis by transcriptional regulation of miR-223 in murine macrophages and mice with CIA. Furthermore, our data indicate that LSF, a selective inhibitor of STAT4, should be an ideal therapeutic agent for treating RA through down-regulating miR-223-associated osteoclastogenesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
23
Issue :
17
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
159010760
Full Text :
https://doi.org/10.3390/ijms23179718