Back to Search Start Over

Fertility Impairment after Trekking at High Altitude: A Proof of Mechanisms on Redox and Metabolic Seminal Changes.

Authors :
Verratti, Vittore
Mrakic-Sposta, Simona
Fusi, Jonathan
Sabovic, Iva
Franzoni, Ferdinando
Pietrangelo, Tiziana
Bondi, Danilo
Dall'Acqua, Stefano
Daniele, Simona
Scarfò, Giorgia
Di Giulio, Camillo
Garolla, Andrea
Source :
International Journal of Molecular Sciences. Aug2022, Vol. 23 Issue 16, p9066-N.PAG. 15p.
Publication Year :
2022

Abstract

Many authors described negative but reversible effects of high-altitude hypoxic exposure on animal and human fertility in terms of sperm concentration, function, and biochemical alterations. The aim of this study was to evaluate the acute and chronic effects of high-altitude exposure on classical sperm parameters, redox status, and membrane composition in a group of travellers. Five healthy Italian males, all lowlanders not accustomed to the altitude, were evaluated after 19 days-trekking through low, moderate, and high altitudes in the Himalayas. Sperm samples were collected before (Pre), 10 days after (Post), and 70 days after the end of the expedition (Follow-up). Sperm concentration, cholesterol and oxysterol membrane content, and redox status were measured. Hypoxic trek led to a significant reduction in sperm concentration (p < 0.001, η2p = 0.91), with a reduction from Pre to Post (71.33 ± 38.81 to 60.65 ± 34.63 × 106/mL) and a further reduction at Follow-up (to 37.13 ± 39.17 × 106/mL). The seminal volume was significantly affected by the hypoxic trek (p = 0.001, η2p = 0.75) with a significant reduction from Pre to Post (2.86 ± 0.75 to 1.68 ± 0.49 mL) and with partial recovery at Follow-up (to 2.46 ± 0.45 mL). Moreover, subjects had an increase in ROS production (+86%), and a decrease in antioxidant capacity (−37%) in the Post period with partial recovery at Follow-up. These results integrated the hormonal response on thyroid function, hypothalamus–pituitary–gonadal axis, and the prolactin/cortisol pathways previously reported. An uncontrolled ROS production, rather than a compromised antioxidant activity, was likely the cause of impaired sperm quality. The reduction in fertility status observed in this study may lie in an evolutionary Darwinian explanation, i.e., limiting reproduction due to the "adaptive disadvantage" offered by the combined stressors of high-altitude hypoxia and daily physical exercise. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
23
Issue :
16
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
158847262
Full Text :
https://doi.org/10.3390/ijms23169066