Back to Search Start Over

A New Method of Myostatin Inhibition in Mice via Oral Administration of Lactobacillus casei Expressing Modified Myostatin Protein, BLS-M22.

Authors :
Sung, Dong Kyung
Kim, Hyeongseop
Park, Sang Eon
Lee, Jiwon
Kim, Ju-A
Park, Young-Chul
Jeon, Hong Bae
Chang, Jong Wook
Lee, Jeehun
Source :
International Journal of Molecular Sciences. Aug2022, Vol. 23 Issue 16, p9059-N.PAG. 15p.
Publication Year :
2022

Abstract

Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
23
Issue :
16
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
158847255
Full Text :
https://doi.org/10.3390/ijms23169059