Back to Search Start Over

Lipopolysaccharide-pretreated mesenchymal stem cell-conditioned medium optimized with 10 kDa filter attenuates the injury of H9c2 cardiomyocytes in a model of hypoxia/reoxygenation.

Authors :
Wang, Dan
Wen, Jing-Yi
Wu, Di
Ying, Zi-Yue
Wen, Zhi-Min
Peng, Hui-Qian
Geng, Cong
Feng, Yuan-Bo
Sui, Zhi-Gang
Lv, Hui-Yi
Wu, Jun
Xu, Bing
Source :
Canadian Journal of Physiology & Pharmacology. 2022, Vol. 100 Issue 7, p651-664. 14p.
Publication Year :
2022

Abstract

Mesenchymal stem cell-derived conditioned medium (MSC-CM) improves cardiac function, which is partly attributed to the released paracrine factors. Since such cardioprotection is moderate and transient, it is essential that MSC-CM's effective components are optimized to alleviate myocardial injury. To optimize MSC-CM, MSCs were treated with or without lipopolysaccharides (LPSs) for 48 h (serum-free), and the supernatant was collected. Then, LPS-CM (MSC stimulated by LPS) was further treated with LPS remover (LPS Re-CM) or was concentrated with a 10 kDa cutoff filter (10 kDa-CM). Enzyme-linked immunosorbent assay showed that all the pretreatments increased the levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin growth factor (IGF) except LPS Re-CM; 10 kDa-CM was superior to the other CMs. Cell Counting Kit-8 displayed that the viability of injured H9c2 cells was enhanced with the increase in the MSC-CM concentration. We also found that the 10 kDa-CM significantly alleviated H9c2 hypoxia/reoxygenation (H/R) injury, as evidenced by the increased Bcl-2/Bax ratio, and decreased the levels of lactate dehydrogenase and cardiac troponin. Transmission electron microscopy (TEM), TdT-mediated dUTP nick-end labelling (TUNEL), and hematoxylin and eosin staining (H&E) confirmed that 10 kDa-CM inhibited H/R-induced H9c2 morphological changes. Proteomic analysis identified 41 differentially expressed proteins in 10 kDa-CM, among which anti-inflammation, proangiogenesis, and antiapoptosis were related to cardiac protection. This study indicates that 10 kDa-CM protects H9c2 cardiomyocytes from H/R injury by preserving most of the protective factors, such as VEGF, HGF, and IGF, in MSC-CM. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00084212
Volume :
100
Issue :
7
Database :
Academic Search Index
Journal :
Canadian Journal of Physiology & Pharmacology
Publication Type :
Academic Journal
Accession number :
158689631
Full Text :
https://doi.org/10.1139/cjpp-2021-0745