Back to Search Start Over

ZBTB11 dysfunction: spectrum of brain abnormalities, biochemical signature and cellular consequences.

Authors :
Sumathipala, Dulika
Strømme, Petter
Fattahi, Zohreh
Lüders, Torben
Sheng, Ying
Kahrizi, Kimia
Einarsen, Ingunn Holm
Sloan, Jennifer L
Najmabadi, Hossein
van den Heuvel, Lambert
Wevers, Ron A
Guerrero-Castillo, Sergio
Mørkrid, Lars
Valayannopoulos, Vassili
Backe, Paul Hoff
Venditti, Charles P
Karnebeek, Clara D van
Nilsen, Hilde
Frengen, Eirik
Misceo, Doriana
Source :
Brain: A Journal of Neurology. Jul2022, Vol. 145 Issue 7, p2602-2616. 15p.
Publication Year :
2022

Abstract

Bi-allelic pathogenic variants in ZBTB11 have been associated with intellectual developmental disorder, autosomal recessive 69 (MRT69; OMIM 618383). We report five patients from three families with novel, bi-allelic variants in ZBTB11. We have expanded the clinical phenotype of MRT69, documenting varied severity of atrophy affecting different brain regions and described combined malonic and methylmalonic aciduria as a biochemical manifestation. As ZBTB11 encodes for a transcriptional regulator, we performeded chromatin immunoprecipitation-sequencing targeting ZBTB11 in fibroblasts from patients and controls. Chromatin immunoprecipitation-sequencing revealed binding of wild-type ZBTB11 to promoters in 238 genes, among which genes encoding proteins involved in mitochondrial functions and RNA processing are over-represented. Mutated ZBTB11 showed reduced binding to 61 of the targeted genes, indicating that the variants act as loss of function. Most of these genes are related to mitochondrial functions. Transcriptome analysis of the patient fibroblasts revealed dysregulation of mitochondrial functions. In addition, we uncovered that reduced binding of the mutated ZBTB11 to ACSF3 leads to decreased ACSF3 transcript level, explaining combined malonic and methylmalonic aciduria. Collectively, these results expand the clinical spectrum of ZBTB11-related neurological disease and give insight into the pathophysiology in which the dysfunctional ZBTB11 affect mitochondrial functions and RNA processing contributing to the neurological and biochemical phenotypes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00068950
Volume :
145
Issue :
7
Database :
Academic Search Index
Journal :
Brain: A Journal of Neurology
Publication Type :
Academic Journal
Accession number :
158601736
Full Text :
https://doi.org/10.1093/brain/awac034