Back to Search Start Over

Conformational flexibility in carbapenem hydrolysis drives substrate specificity of the class D carbapenemase OXA-24/40.

Authors :
Mitchell, Joshua M.
June, Cynthia M.
Baggett, Vincent L.
Lowe, Beth C.
Ruble, James F.
Bonomo, Robert A.
Leonard, David A.
Powers, Rachel A.
Source :
Journal of Biological Chemistry. Jul2022, Vol. 298 Issue 7, p1-9. 9p.
Publication Year :
2022

Abstract

The evolution of multidrug resistance in Acinetobacter spp. increases the risk of our best antibiotics losing their efficacy. From a clinical perspective, the carbapenem-hydrolyzing class D ß-lactamase subfamily present in Acinetobacter spp. is particularly concerning because of its ability to confer resistance to carbapenems. The kinetic profiles of class D ß-lactamases exhibit variability in carbapenem hydrolysis, suggesting functional differences. To better understand the structure-function relationship between the carbapenem-hydrolyzing class D ß-lactamase OXA-24/40 found in Acinetobacter baumannii and carbapenem substrates, we analyzed steady-state kinetics with the carbapenem antibiotics meropenem and ertapenem and determined the structures of complexes of OXA-24/40 bound to imipenem, meropenem, doripenem, and ertapenem, as well as the expanded-spectrum cephalosporin cefotaxime, using X-ray crystallography. We show that OXA-24/40 exhibits a preference for ertapenem compared with meropenem, imipenem, and doripenem, with an increase in catalytic efficiency of up to fourfold. We suggest that superposition of the nine OXA-24/40 complexes will better inform future inhibitor design efforts by providing insight into the complicated and varying ways in which carbapenems are selected and bound by class D ß-lactamases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
298
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
158580592
Full Text :
https://doi.org/10.1016/j.jbc.2022.102127