Back to Search Start Over

A Heat‐Liquefiable Solid Precursor for Ambient Growth of Perovskites with High Tunability, Performance and Stability.

Authors :
He, Yi
Lin, Zedong
Wang, Jian
Zhang, Kai
Xu, Xiuwen
Li, Yu
Huang, Xianzhen
Ma, Tingli
Xiao, Shuang
Yang, Shihe
Source :
Small Methods. Aug2022, Vol. 6 Issue 8, p1-9. 9p.
Publication Year :
2022

Abstract

Halide perovskites are intensively studied for applications in optoelectronic devices because of their outstanding properties and relatively low cost. However, the common precursor solutions for perovskite fabrication are rather unstable in the presence of moisture and oxygen, limiting the large‐scale low‐cost production of perovskite. Herein, water is used counterintuitively to formulate an ambient stable perovskite precursor, which is peculiar in that it is solid at room temperature but becomes a liquid at 75 °C. The non‐fluidity of the precursor stemmed from the water‐assisted intermediate fiber assembly, conferring high damp air stability. Yet the heat‐liquefiability made the precursor highly processible for perovskite growth, and when guided by polyvinyl pyrrolidone coordination with Pb2+, the perovskite can preferentially grow along the [200] direction, significantly improving the film quality. To demonstrate the utility of the precursor, it has been used to fabricate self‐driven halide perovskite photodetectors, which exhibited a low noise current of 2.0 × 10−14 A Hz−1/2, a high specific detectivity up to 1.4 × 1013 Jones, and high stability of 20 days of operation with only < 5% external quantum efficiency decay. This type of solid‐liquid convertible precursor opens up new opportunities for wider applications of perovskites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23669608
Volume :
6
Issue :
8
Database :
Academic Search Index
Journal :
Small Methods
Publication Type :
Academic Journal
Accession number :
158572634
Full Text :
https://doi.org/10.1002/smtd.202200384