Back to Search Start Over

Quadratic residue pattern and the Galois group of \mathbb{Q}(\sqrt{a_{1}}, \sqrt{a_{2}}, \dots, \sqrt{a_{n}}).

Authors :
Babu, C. G. Karthick
Mukhopadhyay, Anirban
Source :
Proceedings of the American Mathematical Society. Oct2022, Vol. 150 Issue 10, p4277-4285. 9p.
Publication Year :
2022

Abstract

Let S= \{ a_{1}, a_{2}, \dots, a_{n} \} be a finite set of non-zero integers. R. Balasubramanian, F. Luca and R. Thangadurai [Proc. Amer. Math. Soc. 138 (2010), pp. 2283–2288] gave an exact formula for the degree of the multi-quadratic field \mathbb {K}= \mathbb {Q}(\sqrt {a_{1}}, \sqrt {a_{2}}, \dots, \sqrt {a_{n}}) over \mathbb {Q}. In this paper, we calculate the explicit structure of the Galois group \operatorname {Gal}(\mathbb {K}/\mathbb {Q}) in terms of its action on \sqrt {a_{i}} for 1 \leq i \leq n. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
150
Issue :
10
Database :
Academic Search Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
158569797
Full Text :
https://doi.org/10.1090/proc/15987