Back to Search Start Over

A Local and Nonlocal Feature Interaction Network for Pansharpening.

Authors :
Yin, Junru
Qu, Jiantao
Sun, Le
Huang, Wei
Chen, Qiqiang
Source :
Remote Sensing. Aug2022, Vol. 14 Issue 15, p3743-3743. 20p.
Publication Year :
2022

Abstract

Pansharpening based on deep learning (DL) has shown great advantages. Most convolutional neural network (CNN)-based methods focus on obtaining local features from multispectral (MS) and panchromatic (PAN) images, but ignore the nonlocal dependence on images. Therefore, Transformer-based methods are introduced to obtain long-range information on images. However, the representational capabilities of features extracted by CNN or Transformer alone are weak. To solve this problem, a local and nonlocal feature interaction network (LNFIN) is proposed in this paper for pansharpening. It comprises Transformer and CNN branches. Furthermore, a feature interaction module (FIM) is proposed to fuse different features and return to the two branches to enhance the representational capability of features. Specifically, a CNN branch consisting of multiscale dense modules (MDMs) is proposed for acquiring local features of the image, and a Transformer branch consisting of pansharpening Transformer modules (PTMs) is introduced for acquiring nonlocal features of the image. In addition, inspired by the PTM, a shift pansharpening Transformer module (SPTM) is proposed for the learning of texture features to further enhance the spatial representation of features. The LNFIN outperforms the state-of-the-art method experimentally on three datasets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
15
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
158523802
Full Text :
https://doi.org/10.3390/rs14153743