Back to Search Start Over

Structural and Functional Analysis of the Pyridoxal Phosphate Homeostasis Protein YggS from Fusobacterium nucleatum.

Authors :
He, Shanru
Chen, Yuanyuan
Wang, Lulu
Bai, Xue
Bu, Tingting
Zhang, Jie
Lu, Ming
Ha, Nam-Chul
Quan, Chunshan
Nam, Ki Hyun
Xu, Yongbin
Source :
Molecules. Aug2022, Vol. 27 Issue 15, p4781-4781. 10p.
Publication Year :
2022

Abstract

Pyridoxal 5′-phosphate (PLP) is the active form of vitamin B6, but it is highly reactive and poisonous in its free form. YggS is a PLP-binding protein found in bacteria and humans that mediates PLP homeostasis by delivering PLP to target enzymes or by performing a protective function. Several biochemical and structural studies of YggS have been reported, but the mechanism by which YggS recognizes PLP has not been fully elucidated. Here, we report a functional and structural analysis of YggS from Fusobacterium nucleatum (FnYggS). The PLP molecule could bind to native FnYggS, but no PLP binding was observed for selenomethionine (SeMet)-derivatized FnYggS. The crystal structure of FnYggS showed a type III TIM barrel fold, exhibiting structural homology with several other PLP-dependent enzymes. Although FnYggS exhibited low (<35%) amino acid sequence similarity with previously studied YggS proteins, its overall structure and PLP-binding site were highly conserved. In the PLP-binding site of FnYggS, the sulfate ion was coordinated by the conserved residues Ser201, Gly218, and Thr219, which were positioned to provide the binding moiety for the phosphate group of PLP. The mutagenesis study showed that the conserved Ser201 residue in FnYggS was the key residue for PLP binding. These results will expand the knowledge of the molecular properties and function of the YggS family. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
15
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
158522327
Full Text :
https://doi.org/10.3390/molecules27154781