Back to Search Start Over

Operating Renewable Energy Communities to Reduce Power Peaks in the Distribution Grid: An Analysis on Grid-Friendliness, Different Shares of Participants, and Economic Benefits.

Authors :
Sudhoff, Robin
Schreck, Sebastian
Thiem, Sebastian
Niessen, Stefan
Source :
Energies (19961073). Aug2022, Vol. 15 Issue 15, p5468-5468. 18p.
Publication Year :
2022

Abstract

Improving the control of flexible assets in distribution grids, e.g., battery storages, electric vehicle charging points, and heat pumps, can balance power peaks caused by high renewable power generation or load to prevent overloading the grid infrastructure. Renewable energy communities, introduced as part of the recast of the Renewable Energy Directive, provide a regulatory framework for this. As a multi-site energy management method, they can tap flexibility potential. The present work quantifies stimulus for renewable energy communities to incentivize the grid-friendly operation of flexible assets, depending on the shares of participants in rural, suburban, and urban grid topologies. Results indicate that an operation of the community, driven by maximizing the economic benefits of its members, does not clearly reduce the annual peak load at the low-voltage substation, while the operation strategy of a grid-friendly renewable energy community achieves a peak power reduction of 23–55%. When there is not full participation, forecasts of the residual load of non-participants provided by the distribution system operator can be considered in the optimization of the renewable energy community. For all simulation cases, the economic benefit between the two operation strategies differs by less than one percent, resulting in a very low additional incentive required for grid-friendliness in terms of reduced peak power. Thus, grid-friendly renewable energy communities might be a cost-effective way to defer future grid reinforcements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
15
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
158521141
Full Text :
https://doi.org/10.3390/en15155468