Back to Search Start Over

Metabolomics insights into the interaction between Pseudomonas plecoglossicida and Epinephelus coioides.

Authors :
Zeng, Jun
Yang, Zhiqiang
Zhong, Yue
Zheng, Yingli
Hao, Jingwen
Luo, Gang
Yan, Qingpi
Source :
Scientific Reports. 8/3/2022, Vol. 12 Issue 1, p1-11. 11p.
Publication Year :
2022

Abstract

As a highly infectious epidemic in aquaculture, Pseudomonas plecoglossicida infection results in high mortality of teleosts and serious economic losses. Host–pathogen interactions shape the outcome of an infection, yet we still understand little about the molecular mechanism of these pathogen-mediated processes. Here, a P. plecoglossicida strain (NZBD9) and Epinephelus coioides were investigated as a model system to characterize pathogen-induced host metabolic remodeling over the course of infection. We present a non-targeted metabolomics profiling of E. coioides spleens from uninfected E. coioides and those infected with wild-type and clpV-RNA interference (RNAi) strains. The most significant changes of E. coioides upon infection were associated with amino acids, lysophospatidylcholines, and unsaturated fatty acids, involving disturbances in host nutritional utilization and immune responses. Dihydrosphingosine and fatty acid 16:2 were screened as potential biomarkers for assessing P. plecoglossicida infection. The silencing of the P. plecoglossicida clpV gene significantly recovered the lipid metabolism of infected E. coioides. This comprehensive metabolomics study provides novel insights into how P. plecoglossicida shape host metabolism to support their survival and replication and highlights the potential of the virulence gene clpV in the treatment of P. plecoglossicida infection in aquaculture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
158336045
Full Text :
https://doi.org/10.1038/s41598-022-17387-6