Back to Search Start Over

Electrochemical Immunoassay for Tumor Marker CA19-9 Detection Based on Self-Assembled Monolayer.

Authors :
Wei, Zheng
Cai, Xiaoping
Cui, Weifeng
Zhang, Junping
Source :
Molecules. Jul2022, Vol. 27 Issue 14, pN.PAG-N.PAG. 9p.
Publication Year :
2022

Abstract

A CA19-9 electrochemical immunosensor was constructed using a hybrid self-assembled membrane modified with a gold electrode and applied to detect real samples. Hybrid self-assembled membranes were selected for electrode modification and used to detect antigens. First, the pretreated working electrodes were placed in a 3-mercaptopropionic acid (MPA)/β-mercaptoethanol (ME) mixture for 24 h for self-assembly. The electrodes were then placed in an EDC/NHS mixture for 1 h. Layer modification was performed by stepwise dropwise addition of CA19-9 antibody, BSA, and antigen. Differential pulse voltammetry was used to characterize this immunosensor preparation process. The assembled electrochemical immunosensor enables linear detection in the concentration range of 0.05–500 U/mL of CA19-9, and the detection limit was calculated as 0.01 U/mL. The results of the specificity measurement test showed that the signal change of the interfering substance was much lower than the response value of the detected antigen, indicating that the sensor has good specificity and strong anti-interference ability. The repeatability test results showed that the relative standard deviations were less than 5%, showing good accuracy and precision. The CA19-9 electrochemical immunosensor was used for the actual sample detection, and the experimental results of the standard serum addition method showed that the RSD values of the test concentrations were all less than 10%. The recoveries were 102.4–115.0%, indicating that the assay has high precision, good accuracy, and high potential application value. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
14
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
158301478
Full Text :
https://doi.org/10.3390/molecules27144578