Back to Search Start Over

Prospective life cycle assessment for designing mobile thermal energy storage system utilizing zeolite.

Authors :
Fujii, Shoma
Nakagaki, Takao
Kanematsu, Yuichiro
Kikuchi, Yasunori
Source :
Journal of Cleaner Production. Sep2022, Vol. 365, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

The decarbonization of industrial heat, especially utilization process heat over 100 °C, is important for the transition to a sustainable society, including climate change mitigation and the transition to a circular economy. This study focused on a mobile thermal energy storage system for industrial use using a zeolite water vapor adsorption and desorption cycle that can utilize waste heat not only in space but also over time, and a prospective life cycle assessment (LCA) to design the system and provide feedback for further development. A numerical model was developed to predict the performance of the system using a moving bed indirect heat exchange system as the heat-discharging system and a moving bed countercurrent contact system as the heat-charging system, coupled with mass, energy, and momentum conservation equations for obtaining the foreground data for the prospective LCA. A prospective LCA was conducted to calculate greenhouse gas emissions (GHG) and resource consumption. The results showed that the m-TES reduces lifecycle GHG, and there are conditions for zeolite flow rates that minimize GHG emissions. It was also found that the resource consumption of m-TES increases as the system size increases, but is less than that of batteries. The hot spots are the fuel-saving effect at the heat-discharging side, auxiliary power at the heat-charging side, and the zeolite manufacturing stage. • A mobile thermal energy storage using zeolite was designed by numerical analysis. • A prospective LCA provides feedbacks to further development required. • There are conditions for zeolite flow rates that minimize lifecycle greenhouse gas. • Abiotic resource consumption is lower than other energy storage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09596526
Volume :
365
Database :
Academic Search Index
Journal :
Journal of Cleaner Production
Publication Type :
Academic Journal
Accession number :
158263760
Full Text :
https://doi.org/10.1016/j.jclepro.2022.132592