Back to Search Start Over

Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake.

Authors :
Elser, James J.
Devlin, Shawn P.
Jinlei Yu
Baumann, Adam
Church, Matthew J.
Dore, John E.
Hall Jr., Robert O.
Hollar, Melody
Johnson, Tyler
Vick-Majors, Trista
White, Cassidy
Source :
Proceedings of the National Academy of Sciences of the United States of America. 7/26/2022, Vol. 119 Issue 30, p1-9. 9p.
Publication Year :
2022

Abstract

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake’s high TN:TP ratios. Regardless of causes, the lake’s stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake’s imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate com- pounds by P-limited microbes. These data highlight the importance of not only abso- lute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*LAKES
*PARTICULATE matter

Details

Language :
English
ISSN :
00278424
Volume :
119
Issue :
30
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
158253302
Full Text :
https://doi.org/10.1073/pnas.2202268119