Back to Search
Start Over
Selective amorphization of SiGe in Si/SiGe nanostructures via high energy Si+ implant.
- Source :
-
Journal of Applied Physics . 7/21/2022, Vol. 132 Issue 3, p1-9. 9p. - Publication Year :
- 2022
-
Abstract
- The selective amorphization of SiGe in Si/SiGe nanostructures via a 1 MeV Si+ implant was investigated, resulting in single-crystal Si nanowires (NWs) and quantum dots (QDs) encapsulated in amorphous SiGe fins and pillars, respectively. The Si NWs and QDs are formed during high-temperature dry oxidation of single-crystal Si/SiGe heterostructure fins and pillars, during which Ge diffuses along the nanostructure sidewalls and encapsulates the Si layers. The fins and pillars were then subjected to a 3 × 1015 ions/cm2 1 MeV Si+ implant, resulting in the amorphization of SiGe, while leaving the encapsulated Si crystalline for larger, 65-nm wide NWs and QDs. Interestingly, the 26-nm diameter Si QDs amorphize, while the 28-nm wide NWs remain crystalline during the same high energy ion implant. This result suggests that the Si/SiGe pillars have a lower threshold for Si-induced amorphization compared to their Si/SiGe fin counterparts. However, Monte Carlo simulations of ion implantation into the Si/SiGe nanostructures reveal similar predicted levels of displacements per cm3. Molecular dynamics simulations suggest that the total stress magnitude in Si QDs encapsulated in crystalline SiGe is higher than the total stress magnitude in Si NWs, which may lead to greater crystalline instability in the QDs during ion implant. The potential lower amorphization threshold of QDs compared to NWs is of special importance to applications that require robust QD devices in a variety of radiation environments. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218979
- Volume :
- 132
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 158114926
- Full Text :
- https://doi.org/10.1063/5.0094185