Back to Search Start Over

MiR-574-3p inhibits glucose toxicity-induced pancreatic β-cell dysfunction by suppressing PRMT1.

Authors :
Lv, Lixia
Wang, Xiumin
Shen, Jinhua
Cao, Ying
Zhang, Qin
Source :
Diabetology & Metabolic Syndrome. 7/15/2022, Vol. 14 Issue 1, p1-11. 11p.
Publication Year :
2022

Abstract

Background: Pancreatic β-cell dysfunction is commonly observed in patients with type 2 diabetes mellitus. Protein arginine methyltransferase 1 (PRMT1) plays an important role in pancreatic β-cell dysfunction. However, the detailed mechanisms remain largely unknown. Methods: RT-qPCR, western blotting, and immunofluorescence assays were used to evaluate PRMT1 and miR-574-3p levels. Cell Counting Kit-8, Advanced Dlycation End products (AGEs), Reactive Oxygen Species (ROS), and glucose-stimulated insulin secretion were assayed, and flow cytometry and RT-qPCR were performed to detect the role of PRMT1 and miR-574-3p in MIN6 cells. Luciferase reporter assays were performed to determine the interactions between PRMT1 and miR-574-3p. Results: High-glucose treatment resulted in the high expression of PRMT1. PRMT1 silencing could alleviate the reduced proliferation, insulin secretion, and GLUT1 level, in addition to suppressing the induced apoptosis, and AGEs and ROS levels, under high glucose conditions. MiR-574-3p was established as an upstream regulator of PRMT1 using luciferase reporter assays. More importantly, miR-574-3p reversed the effect of PRMT1 silencing in MIN6 cells. Conclusions: miR-574-3p suppresses glucose toxicity-induced pancreatic β-cell dysfunction by targeting PRMT1. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17585996
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Diabetology & Metabolic Syndrome
Publication Type :
Academic Journal
Accession number :
158020294
Full Text :
https://doi.org/10.1186/s13098-022-00869-y