Back to Search
Start Over
Continuous Land Cover Change Detection in a Critically Endangered Shrubland Ecosystem Using Neural Networks.
- Source :
-
Remote Sensing . Jun2022, Vol. 14 Issue 12, pN.PAG-N.PAG. 16p. - Publication Year :
- 2022
-
Abstract
- Existing efforts to continuously monitor land cover change using satellite image time series have mostly focused on forested ecosystems in the tropics and the Northern Hemisphere. The notable difference in spectral reflectance that occurs following deforestation allows land cover change to be detected with relative accuracy. Less progress has been made in detecting change in low productivity or disturbance-prone vegetation such as grasslands and shrublands where natural dynamics can be difficult to distinguish from habitat loss. Renosterveld is a hyperdiverse, critically endangered shrubland ecosystem in South Africa with less than 5–10% of its original extent remaining in small, highly fragmented patches. I demonstrate that classification of satellite image time series using neural networks can accurately detect the transformation of Renosterveld within a few days of its occurrence and that trained models are suitable for operational continuous monitoring. A dataset of precisely dated vegetation change events between 2016 and 2021 was obtained from daily, high resolution Planet Labs satellite data. This dataset was then used to train 1D convolutional neural networks and Transformers to continuously detect land cover change events in time series of vegetation activity from Sentinel 2 satellite data. The best model correctly identified 89% of land cover change events at the pixel-level, achieving a f-score of 0.93, a 79% improvement over the f-score of 0.52 achieved using a method designed for forested ecosystems based on trend analysis. Models have been deployed to operational use and are producing updated detections of habitat loss every 10 days. There is great potential for continuous monitoring of habitat loss in non-forest ecosystems with complex natural dynamics. A key limiting step is the development of accurately dated datasets of land cover change events with which to train machine-learning classifiers. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 14
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 157823687
- Full Text :
- https://doi.org/10.3390/rs14122766