Back to Search Start Over

Reversal of the Pinning Direction in the Synthetic Spin Valve with a NiFeCr Seed Layer.

Authors :
Yan, Shaohua
Chen, Weibin
Zhou, Zitong
Li, Zhi
Cao, Zhiqiang
Lu, Shiyang
Zhu, Dapeng
Zhao, Weisheng
Leng, Qunwen
Source :
Nanomaterials (2079-4991). Jun2022, Vol. 12 Issue 12, p2077-N.PAG. 8p.
Publication Year :
2022

Abstract

The effect of the seed layers on the magnetic properties of the giant magnetoresistance thin films has received a lot of attention. Here, a synthetic spin valve film stack with a wedge-shaped NiFeCr seed layer is deposited and annealed following a zero-field cooling procedure. The film crystallinity and magnetic properties are studied as a function of the NiFeCr seed layer thickness. It is found that the exchange coupling field from the IrMn/CoFe interface and the antiferromagnetic coupling field in the synthetic antiferromagnet both increase as the seed layer thickness increases, indicating the perfection of film texture. In this film, the critical thickness of the NiFeCr seed layer for the formation of the ordered IrMn3 texture is about 9.3 nm. Meanwhile, a reversal of the pinning direction in the film is observed at this critical thickness of NiFeCr. This phenomenon can be explained in a free energy model by the competition effect between the exchange coupling and the interlayer coupling during the annealing process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
12
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
157795454
Full Text :
https://doi.org/10.3390/nano12122077