Back to Search Start Over

Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers.

Authors :
Korkmaz, Yilmaz
Dar, Salman U. H.
Yurt, Mahmut
Ozbey, Muzaffer
Cukur, Tolga
Source :
IEEE Transactions on Medical Imaging. Jul2022, Vol. 41 Issue 7, p1747-1763. 17p.
Publication Year :
2022

Abstract

Supervised reconstruction models are characteristically trained on matched pairs of undersampled and fully-sampled data to capture an MRI prior, along with supervision regarding the imaging operator to enforce data consistency. To reduce supervision requirements, the recent deep image prior framework instead conjoins untrained MRI priors with the imaging operator during inference. Yet, canonical convolutional architectures are suboptimal in capturing long-range relationships, and priors based on randomly initialized networks may yield suboptimal performance. To address these limitations, here we introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adversarial TransformERs (SLATER). SLATER embodies a deep adversarial network with cross-attention transformers to map noise and latent variables onto coil-combined MR images. During pre-training, this unconditional network learns a high-quality MRI prior in an unsupervised generative modeling task. During inference, a zero-shot reconstruction is then performed by incorporating the imaging operator and optimizing the prior to maximize consistency to undersampled data. Comprehensive experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against state-of-the-art unsupervised methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780062
Volume :
41
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Medical Imaging
Publication Type :
Academic Journal
Accession number :
157765797
Full Text :
https://doi.org/10.1109/TMI.2022.3147426