Back to Search Start Over

Genome-Wide RNA Sequencing Analysis in Human Dermal Fibroblasts Exposed to Low-Dose Ultraviolet A Radiation.

Authors :
Wang, Jinyun
Yano, Satoshi
Xie, Kun
Ohata, Yoshihisa
Hara, Taichi
Source :
Genes. Jun2022, Vol. 13 Issue 6, p974-974. 13p.
Publication Year :
2022

Abstract

Ultraviolet A (UVA) radiation can pass through the epidermis and reach the dermal skin layer, contributing to photoaging, DNA damage, and photocarcinogenesis in dermal fibroblasts. High-dose UVA exposure induces erythema, whereas low-dose, long-term UVA exposure causes skin damage and cell senescence. Biomarkers for evaluating damage caused by low-dose UVA in fibroblasts are lacking, making it difficult to develop therapeutic agents for skin aging and aging-associated diseases. We performed RNA-sequencing to investigate gene and pathway alterations in low-dose UVA-irradiated human skin-derived NB1RGB primary fibroblasts. Differentially expressed genes were identified and subjected to Gene Ontology and reactome pathway analysis, which revealed enrichment in genes in the senescence-associated secretory phenotype, apoptosis, respiratory electron transport, and transcriptional regulation by tumor suppressor p53 pathways. Insulin-like growth factor binding protein 7 (IGFBP7) showed the lowest p-value in RNA-sequencing analysis and was associated with the senescence-associated secretory phenotype. Protein–protein interaction analysis revealed that Fos proto-oncogene had a high-confidence network with IGFBP7 as transcription factor of the IGFBP7 gene among SASP hit genes, which were validated using RT-qPCR. Because of their high sensitivity to low-dose UVA radiation, Fos and IGFBP7 show potential as biomarkers for evaluating the effect of low-dose UVA radiation on dermal fibroblasts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734425
Volume :
13
Issue :
6
Database :
Academic Search Index
Journal :
Genes
Publication Type :
Academic Journal
Accession number :
157748823
Full Text :
https://doi.org/10.3390/genes13060974