Back to Search Start Over

A dynamic assessment of various non-Newtonian models for ternary hybrid nanomaterial involving partially ionized mechanism.

Authors :
Nazir, Umar
Sohail, Muhammad
Kumam, Poom
Sitthithakerngkiet, Kanokwan
Mousa, Abd Allah A.
Khan, Muhammad Jahangir
Galal, Ahmed M.
Source :
Scientific Reports. 6/19/2022, Vol. 12 Issue 1, p1-15. 15p.
Publication Year :
2022

Abstract

The dynamic of fluids and coolants in automobiles are achieved by enhancement in heat energy using ternary hybrid nanostructures. Ternary hybrid nanomaterial is obtained by suspension of three types of nanofluid (aluminum oxide, silicon dioxide and titanium dioxide) in base fluid (EG). Prime investigation is to address comparison study in thermal energy involving various flow models termed as Maxwell fluid and Williamson fluid. This exploration is carried out by partially ionized fluidic particles in the presence of ternary hybrid nanomaterial over cone. Heat transfer is carried out by heat source and thermal radiation. Equations regarding Ordinary differential are achieved from PDEs using variable transformations. The numerical consequences are obtained implementing finite element method. Flow into fluid particles is enhanced versus higher values of Hall and ion slip parameters. Thermal performance as well as flow performance for the case Williamson fluid is better than for case of Maxwell fluid. Production via energy is boosted versus heat source parameter. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
157528730
Full Text :
https://doi.org/10.1038/s41598-022-14312-9