Back to Search Start Over

Crowberry inhibits cell proliferation and migration through a molecular mechanism that includes inhibition of DEK and Akt signaling in cholangiocarcinoma.

Authors :
Wang, Xue
Zhou, Xuebing
Zhang, Ludan
Zhang, Xin
Yang, Chunyu
Piao, Yingshi
Zhao, Jinhua
Jin, Lili
Jin, Guihua
An, Renbo
Ren, Xiangshan
Source :
Chinese Medicine. 6/13/2022, Vol. 17 Issue 1, p1-18. 18p.
Publication Year :
2022

Abstract

Background: Cholangiocarcinoma (CCA) is a rare biliary adenocarcinoma related to poor clinical prognosis. Crowberry is an herbal medicine used to control inflammatory diseases and reestablish antioxidant enzyme activity. Although crowberry shows significant therapeutic efficacy in various tumors and diseases, its anticancer effects and specific molecular mechanisms in CCA are poorly understood. Aim of the study: This study was conducted to characterize crowberry effects on CCA cells behavior. Materials and methods: The chemical profiles of crowberry extract was qualitatively analyzed by high-performance liquid chromatography (HPLC) and HPLC–tandem mass spectrometry. MTT, colony formation and EdU assays were performed to measure cell proliferation. The effect of crowberry treatment on CCA cell migration was assessed by wound healing and migration assays. Moreover, Hoechst staining assay and flow cytometry were performed to assess the cell apoptosis rate. Western blotting was used to assess the protein expression levels of key factors associated with apoptosis, the Akt signaling pathway, and the epithelial-mesenchymal transition. A xenograft model was established and immunohistochemical and H&E staining was performed to assess crowberry antitumor effects in vivo. Results: Crowberry clearly inhibited CCA cells proliferation and migration in a dose-dependent manner and induced apoptosis in vitro. Crowberry inactivated the PI3K/Akt signaling pathway by regulating DEK in vitro and significantly inhibited tumor growth by downregulating the DEK expression in xenograft models. Conclusion: Crowberry inhibits CCA cells proliferation and migration through a molecular mechanism that includes inhibition of DEK and Akt signaling pathway inhibition in vitro and in vivo. Highlights: Crowberry alterd expression levels of key mediators in PI3K/Akt signaling pathway. Crowberry alterd expression levels of key mediators in PI3K/Akt signaling pathway. Crowberry suppressed the expression of the proto-oncogene DEK in vivo and in vitro. Crowberry inhibited CCA progression and migration through a molecular mechanism that includes inhibition of DEK and the Akt signaling pathway in vivo and in vitro. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17498546
Volume :
17
Issue :
1
Database :
Academic Search Index
Journal :
Chinese Medicine
Publication Type :
Academic Journal
Accession number :
157412208
Full Text :
https://doi.org/10.1186/s13020-022-00623-6