Back to Search
Start Over
On the singular two-parameter eigenvalue problem II.
- Source :
-
Linear Algebra & its Applications . Sep2022, Vol. 649, p433-451. 19p. - Publication Year :
- 2022
-
Abstract
- In the 1960s, Atkinson introduced an abstract algebraic setting for multiparameter eigenvalue problems. He showed that a nonsingular multiparameter eigenvalue problem is equivalent to the associated system of generalized eigenvalue problems, which is a key relation for many theoretical results and numerical methods for nonsingular multiparameter eigenvalue problems. In 2009, Muhič and Plestenjak extended the above relation to a class of singular two-parameter eigenvalue problems with coprime characteristic polynomials and such that all finite eigenvalues are algebraically simple. They introduced a way to solve a singular two-parameter eigenvalue problem by computing the common regular eigenvalues of the associated system of two singular generalized eigenvalue problems. Using new tools, in particular the stratification theory, we extend this connection to singular two-parameter eigenvalue problems with possibly multiple eigenvalues and such that characteristic polynomials can have a nontrivial common factor. [ABSTRACT FROM AUTHOR]
- Subjects :
- *EIGENVALUES
*POLYNOMIALS
*NINETEEN sixties
*FINITE, The
Subjects
Details
- Language :
- English
- ISSN :
- 00243795
- Volume :
- 649
- Database :
- Academic Search Index
- Journal :
- Linear Algebra & its Applications
- Publication Type :
- Academic Journal
- Accession number :
- 157354099
- Full Text :
- https://doi.org/10.1016/j.laa.2022.05.013