Back to Search Start Over

Quasi Type-1 PLL With Tunable Phase Detector for Unbalanced and Distorted Three-Phase Grid.

Authors :
Ahmed, Hafiz
Tir, Zoheir
Verma, Anant Kumar
Elghali, Seifeddine Ben
Benbouzid, Mohamed
Source :
IEEE Transactions on Energy Conversion. Jun2022, Vol. 37 Issue 2, p1369-1378. 10p.
Publication Year :
2022

Abstract

Out of various moving average filter (MAF)-based phase-locked-loop (PLL), quasi type-1 PLL (QT1-PLL) is widely adopted due to its fast dynamic performance, implementation simplicity, and harmonics rejection abilities. However, the performance of QT1-PLL deteriorates in the presence of an off-nominal frequency unbalanced grid voltage component. Moreover, the sensitivity towards the fundamental frequency negative sequence (FFNS) component is high. Hence, this paper proposes a novel enhanced QT1-PLL solution that is insensitive to unbalance in the grid voltage signal during off-nominal frequency conditions. The proposed adaptive phase detector makes it possible to estimate both the fundamental frequency positive sequence (FFPS) and FFNS components with a high degree of immunity against harmonics. Notably, the pre-loop separation of the FFPS and the FFNS components helps suppress the second harmonic oscillations for improving the parameter estimation accuracy. The loop-filter design of QT1-PLL remains unaffected and requires a proportional gain to estimate the fundamental phase and frequency information. To address the DC offset issue, a modified delayed signal cancellation method is also proposed, which can theoretically eliminate the DC offset for any arbitrary delay length. A small-signal model of the proposed PLL is developed for the sake of stability analysis. Comparative numerical simulation and experimental results are provided with various variants of QT1-PLLs to demonstrate the performance improvement achieved with the proposed technique. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858969
Volume :
37
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Energy Conversion
Publication Type :
Academic Journal
Accession number :
157073453
Full Text :
https://doi.org/10.1109/TEC.2021.3130492