Back to Search Start Over

Angiotensin-converting enzyme 2 in peripheral lung club cells modulates the susceptibility to SARS-CoV-2 in chronic obstructive pulmonary disease.

Authors :
Yang Peng
Zhao-Ni Wang
Shi-Ying Chen
Ai-Ru Xu
Zhang-Fu Fang
Jing Sun
Zi-Qing Zhou
Xiao-Tao Hou
Lai-Jian Cen
Jian-Juan Ma
Jin-Cun Zhao
Wei-Jie Guan
De-Yun Wang
Nan-Shan Zhong
Source :
American Journal of Physiology: Lung Cellular & Molecular Physiology. May2022, Vol. 322 Issue 5, pL712-L721. 10p.
Publication Year :
2022

Abstract

Accumulating evidence has confirmed that chronic obstructive pulmonary disease (COPD) is a risk factor for development of severe pathological changes in the peripheral lungs of patients with COVID-19. However, the underlying molecular mechanisms remain unclear. Because bronchiolar club cells are crucial for maintaining small airway homeostasis, we sought to explore whether the altered susceptibility to SARS-CoV-2 infection of the club cells might have contributed to the severe COVID-19 pneumonia in COPD patients. Our investigation on the quantity and distribution patterns of angiotensin-converting enzyme 2 (ACE2) in airway epithelium via immunofluorescence staining revealed that the mean fluorescence intensity of the ACE2-positive epithelial cells was significantly higher in club cells than those in other epithelial cells (including ciliated cells, basal cells, goblet cells, neuroendocrine cells, and alveolar type 2 cells). Compared with nonsmokers, the median percentage of club cells in bronchiolar epithelium and ACE2-positive club cells was significantly higher in COPD patients. In vitro, SARS-CoV-2 infection (at a multiplicity of infection of 1.0) of primary small airway epithelial cells, cultured on air-liquid interface, confirmed a higher percentage of infected ACE2-positive club cells in COPD patients than in nonsmokers. Our findings have indicated the role of club cells in modulating the pathogenesis of SARS-CoV-2-related severe pneumonia and the poor clinical outcomes, which may help physicians to formulate a novel therapeutic strategy for COVID-19 patients with coexisting COPD. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10400605
Volume :
322
Issue :
5
Database :
Academic Search Index
Journal :
American Journal of Physiology: Lung Cellular & Molecular Physiology
Publication Type :
Academic Journal
Accession number :
157059210
Full Text :
https://doi.org/10.1152/ajplung.00305.2021