Back to Search
Start Over
Facile synthesis disposable MOF membrane filter: Growth of NH2-MIL-125 (Ti) on filter paper for fast removal of organophosphorus pesticides in aqueous solution and vegetables.
- Source :
-
Food Chemistry . Sep2022, Vol. 389, pN.PAG-N.PAG. 1p. - Publication Year :
- 2022
-
Abstract
- [Display omitted] • Disposable MOF membrane was facile synthesized by one-pot method. • MOF membrane can adsorb organophosphorus pesticides fast. • Adsorption mechanism includes π-π interaction, the affinity of –NH 2 and Ti for P. • MOF membrane can remove organophosphorus pesticides efficiently in actual spinach samples. Metal-organic frameworks (MOFs) have great potential to remove pesticide residues. However, the lack of affinity between the materials and target and the process of trivial sample preparation resulted in limited removal efficiency. Here, we report a one-pot method for the fast preparation of NH 2 -MIL-125 (Ti)-based filter paper to synthesise NH 2 -MIL-125 (Ti)-based filter paper membranes. The NH 2 -MIL-125 (Ti)-based filter paper membrane takes advantage of π-π interactions between the organophosphorus pesticides (OPPs) and the benzene ring of MOFs. The affinity of amino groups and metal Ti for phosphorus atoms in the OPPs exhibits rapid removal efficiency for three OPPs, imidan, fenthion, and fenitrothion. The isothermal adsorption results for imidan, fenthion, and fenitrothion were consistent with the Langmuir, Freundlich, and Langmuir models, respectively. The kinetic results for imidan, fenthion, and fenitrothion agreed with the pseudo-second-order kinetic model, and the removal efficiency reached equilibrium within 1 min. There was no significant change in the adsorption capacity of OPPs in different pH solutions (pH = 2–10). Compared with that of MOFs, the NH 2 -MIL-125 (Ti)-based filter paper membrane removal efficiency of OPPs is the same, and it also has better removal efficiency in actual spinach samples. As a result, the sample pretreatment procedure was simplified using a low-cost and simple-to-synthesize disposable NH 2 -MIL-125 (Ti)-based filter paper membrane, samples' quick separation and the simultaneous fast removal of OPPs. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03088146
- Volume :
- 389
- Database :
- Academic Search Index
- Journal :
- Food Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 156984168
- Full Text :
- https://doi.org/10.1016/j.foodchem.2022.133056