Back to Search Start Over

Crosstalk between β-Catenin and CCL2 Drives Migration of Monocytes towards Glioblastoma Cells.

Authors :
Aretz, Philippe
Maciaczyk, Donata
Yusuf, Suad
Sorg, Rüdiger V.
Hänggi, Daniel
Liu, Hongjia
Liu, Hongde
Dakal, Tikam Chand
Sharma, Amit
Bethanabatla, Ramakrishna
Neumann, Silke
Maciaczyk, Jarek
Source :
International Journal of Molecular Sciences. May2022, Vol. 23 Issue 9, p4562-4562. 16p.
Publication Year :
2022

Abstract

Isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is a fast growing and highly heterogeneous tumor, often characterized by the presence of glioblastoma stem cells (GSCs). The plasticity of GSCs results in therapy resistance and impairs anti-tumor immune response by influencing immune cells in the tumor microenvironment (TME). Previously, β-catenin was associated with stemness in GBM as well as with immune escape mechanisms. Here, we investigated the effect of β-catenin on attracting monocytes towards GBM cells. In addition, we evaluated whether CCL2 is involved in β-catenin crosstalk between monocytes and tumor cells. Our analysis revealed that shRNA targeting β-catenin in GBMs reduces monocytes attraction and impacts CCL2 secretion. The addition of recombinant CCL2 restores peripheral blood mononuclear cells (PBMC) migration towards medium (TCM) conditioned by shβ-catenin GBM cells. CCL2 knockdown in GBM cells shows similar effects and reduces monocyte migration to a similar extent as β-catenin knockdown. When investigating the effect of CCL2 on β-catenin activity, we found that CCL2 modulates components of the Wnt/β-catenin pathway and alters the clonogenicity of GBM cells. In addition, the pharmacological β-catenin inhibitor MSAB reduces active β-catenin, downregulates the expression of associated genes and alters CCL2 secretion. Taken together, we showed that β-catenin plays an important role in attracting monocytes towards GBM cells in vitro. We hypothesize that the interactions between β-catenin and CCL2 contribute to maintenance of GSCs via modulating immune cell interaction and promoting GBM growth and recurrence. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
23
Issue :
9
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
156871929
Full Text :
https://doi.org/10.3390/ijms23094562