Back to Search
Start Over
LIE-TYPE DERIVATIONS OF NEST ALGEBRAS ON BANACH SPACES AND RELATED TOPICS.
- Source :
-
Journal of the Australian Mathematical Society . Jun2022, Vol. 112 Issue 3, p391-430. 40p. - Publication Year :
- 2022
-
Abstract
- Let $\mathcal {X}$ be a Banach space over the complex field $\mathbb {C}$ and $\mathcal {B(X)}$ be the algebra of all bounded linear operators on $\mathcal {X}$. Let $\mathcal {N}$ be a nontrivial nest on $\mathcal {X}$ , $\text {Alg}\mathcal {N}$ be the nest algebra associated with $\mathcal {N}$ , and $L\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ be a linear mapping. Suppose that $p_n(x_1,x_2,\ldots ,x_n)$ is an $(n-1)\,$ th commutator defined by n indeterminates $x_1, x_2, \ldots , x_n$. It is shown that L satisfies the rule $$ \begin{align*}L(p_n(A_1, A_2, \ldots, A_n))=\sum_{k=1}^{n}p_n(A_1, \ldots, A_{k-1}, L(A_k), A_{k+1}, \ldots, A_n) \end{align*} $$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ if and only if there exist a linear derivation $D\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ and a linear mapping $H\colon \text {Alg}\mathcal {N}\longrightarrow \mathbb {C}I$ vanishing on each $(n-1)\,$ th commutator $p_n(A_1,A_2,\ldots , A_n)$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ such that $L(A)=D(A)+H(A)$ for all $A\in \text {Alg}\mathcal {N}$. We also propose some related topics for future research. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14467887
- Volume :
- 112
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 156803928
- Full Text :
- https://doi.org/10.1017/S1446788721000148