Back to Search
Start Over
Assessing Measurement Invariance for Longitudinal Data through Latent Markov Models.
- Source :
-
Structural Equation Modeling . May/Jun2022, Vol. 29 Issue 3, p381-393. 13p. - Publication Year :
- 2022
-
Abstract
- We propose a general approach to detect measurement non-invariance in latent Markov models for longitudinal data. We define different notions of differential item functioning in the context of panel data. We then present a model selection approach based on the Bayesian information criterion (BIC) to choose both the number of latent states and the measurement structure. We show the practical relevance by means of an extensive simulation study, and illustrate its use on two real–data examples from the social sciences. Our results indicate that BIC is able to select the correct measurement equivalence structure more than 95% of times. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MARKOV processes
*PANEL analysis
*LATENT class analysis (Statistics)
*MEASUREMENT
Subjects
Details
- Language :
- English
- ISSN :
- 10705511
- Volume :
- 29
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Structural Equation Modeling
- Publication Type :
- Academic Journal
- Accession number :
- 156729858
- Full Text :
- https://doi.org/10.1080/10705511.2021.1993857