Back to Search Start Over

Estimating Phosphorescent Emission Energies in IrIII Complexes Using Large‐Scale Quantum Computing Simulations**.

Authors :
Genin, Scott N.
Ryabinkin, Ilya G.
Paisley, Nathan R.
Whelan, Sarah O.
Helander, Michael G.
Hudson, Zachary M.
Source :
Angewandte Chemie. 5/2/2022, Vol. 134 Issue 19, p1-5. 5p.
Publication Year :
2022

Abstract

Here we calculate T1→S0 transition energies in nine phosphorescent iridium complexes using the iterative qubit coupled cluster (iQCC) method to determine if quantum simulations have any advantages over classical methods. These simulations would require a gate‐based quantum computer with at least 72 fully‐connected logical qubits. Since such devices do not yet exist, we demonstrate the iQCC method using a purpose‐built quantum simulator on classical hardware. The results are compared to a selection of common DFT functionals, ab initio methods, and empirical data. iQCC is found to match the accuracy of the best DFT functionals, but with a better correlation coefficient, demonstrating that it is better at predicting the structure–property relationship. Results indicate that the iQCC method has the required accuracy to design organometallic complexes when deployed on emerging quantum hardware and sets an industrially relevant target for demonstrating quantum advantage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
134
Issue :
19
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
156508834
Full Text :
https://doi.org/10.1002/ange.202116175