Back to Search Start Over

Increase in processing flue gas flow rate while maintaining the fluidization state and filtration performance in a low-temperature continuous regeneration filter using a fluidized bed.

Authors :
Yokoo, Kento
Yamazaki, Tomoyuki
Kishida, Masahiro
Yamamoto, Tsuyoshi
Source :
Advanced Powder Technology. Mar2022, Vol. 33 Issue 3, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

[Display omitted] • Processing gas flow rate in a fluidized bed filter increases by large bed particles. • Similar fluidization state leads to similar collection efficiency. • Large bed particles have slightly larger BET surface areas than small bed particles. • The amount of catalyst on a large particle is comparable to that on a small particle. • Continuous regeneration can be achieved at 320 °C with a collection efficiency 100%. To increase the processing gas flow rate in a fluidized bed filter, the effects of superficial velocity and fluidization state on PM filtration and combustion were examined by experiments using large bed particles (710 μm). The fluidization state at 710 μm was measured by image analysis and recurrence plot, and the superficial velocities as experimental conditions were determined to obtain almost the same fluidization state and filtration efficiency as those for small bed particles (420 μm) in previous studies. The BET-surface area of 710 μm is slightly larger than that of 420 μm, and the amount of potassium catalyst doped on large bed particles is comparable to that at 420 μm. The gas phase velocity is increased by increasing the processing gas flow rate, and the contact probability between PM and oxidizer increases. The PM combustion reaction is significantly promoted owing to the effects of the potassium catalyst and the increase in the gas phase velocity, and the minimum continuous regeneration temperature is 30 °C lower than that at 420 μm. As a result, fluidized bed filters using large bed particles can be operated in continuous regeneration mode at a bed temperature of 320 °C while maintaining a filtration efficiency of 100%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09218831
Volume :
33
Issue :
3
Database :
Academic Search Index
Journal :
Advanced Powder Technology
Publication Type :
Academic Journal
Accession number :
156362546
Full Text :
https://doi.org/10.1016/j.apt.2022.103508