Back to Search Start Over

Mutation of a prenyltransferase results in accumulation of subglutinols and destruxins and enhanced virulence in the insect pathogen, Metarhizium anisopliae.

Authors :
Li, Chengzhou
Huang, Wenyou
Zhou, Tingting
Zhao, Qian
Huang, Peiquan
Qi, Ping
Huang, Song
Huang, Shuaishuai
Keyhani, Nemat O.
Huang, Zhen
Source :
Environmental Microbiology. Mar2022, Vol. 24 Issue 3, p1362-1379. 18p.
Publication Year :
2022

Abstract

Summary: The insect pathogenic fungus, Metarhizium anisopliae is a commercialized microbial agent used in biological control efforts targeting a diverse range of agricultural and other insect pests. The second step in the synthesis of a group of M. anisopliae α‐pyrone diterpenoids (termed subglutinols) involves the activity of a prenyltransferase family geranylgeranyl diphosphate synthase (product of the subD/MaGGPPS5 gene). Here, we show that targeted gene disruption of MaGGPPS5 results in earlier conidial germination and faster greater vegetative growth compared to the wild type (WT) parent and complemented strains. In addition, insect bioassays revealed that the ΔMaGGPPS5 mutant strain displayed significantly increased virulence, with a ~50% decrease in the mean lethal time (LT50, from 6 to 3 days) to kill (50% of) target insects, and an ~15–40‐fold decrease in the mean lethal dose (LC50). Metabolite profiling indicated increased accumulation in the ΔMaGGPPS5 mutant of select subglutinols (A, B and C) and destruxins (A, A2, B and B2), the latter a set of fungal secondary metabolites that act as insect toxins, with a concomitant loss of production of subglutinol 'analogue 45'. These data suggest that the increased virulence phenotype seen for the ΔMaGGPPS5 strain can, at least in part, be attributed to a combination of faster growth and increased insect toxin production, linking the production of two different secondary metabolite pathways, and represent a novel approach for the screening of isolates with enhanced virulence via modulation of terpenoid secondary metabolite biosynthesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14622912
Volume :
24
Issue :
3
Database :
Academic Search Index
Journal :
Environmental Microbiology
Publication Type :
Academic Journal
Accession number :
156195670
Full Text :
https://doi.org/10.1111/1462-2920.15859