Back to Search Start Over

A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics.

Authors :
Killingbeck, Siobhan F.
Dow, Christine F.
Unsworth, Martyn J.
Source :
Journal of Glaciology. Apr2022, Vol. 68 Issue 268, p319-336. 18p.
Publication Year :
2022

Abstract

Liquid water can exist at temperatures well below freezing beneath glaciers and ice sheets, where subglacial water systems, fresh and saline, have been shown to host unique microbial ecosystems. Geophysical techniques sensitive to fluid-content contrasts, e.g. electromagnetics, can characterize subglacial water and its salinity. Here, we assess the ground-based transient electromagnetic (TEM) method for deriving the resistivity and salinity of subglacial water. We adapt an existing open-source Bayesian inversion algorithm, which uses independent depth constraints, to output posterior distributions of resistivity and pore fluid salinity with depth. A variety of synthetic models, including a thin (5 m), conductive (0.16 Ωm), hypersaline (147 psu) subglacial lake, are used to evaluate the TEM method for imaging under 800 m-thick ice. The study demonstrates that TEM methods can resolve conductive, saline bodies accurately using external depth constraints, for example, from radar or seismic data. The depth resolution of TEM can be limited beneath deep (>800 m), thick (>50 m) conductive, water bodies and additional constraints from passive electromagnetic (EM) methods could be used to reduce ambiguities in the TEM results. Subsequently, non-invasive active and passive EM methods could provide profound insights into remote aqueous systems under glaciers and ice sheets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00221430
Volume :
68
Issue :
268
Database :
Academic Search Index
Journal :
Journal of Glaciology
Publication Type :
Academic Journal
Accession number :
156125738
Full Text :
https://doi.org/10.1017/jog.2021.94