Back to Search Start Over

Adjusting COVID-19 Seroprevalence Survey Results to Account for Test Sensitivity and Specificity.

Authors :
Meyer, Mark J
Yan, Shuting
Schlageter, Samantha
Kraemer, John D
Rosenberg, Eli S
Stoto, Michael A
Source :
American Journal of Epidemiology. Apr2022, Vol. 191 Issue 4, p681-688. 8p.
Publication Year :
2022

Abstract

Population-based seroprevalence surveys can provide useful estimates of the number of individuals previously infected with serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and still susceptible, as well as contribute to better estimates of the case-fatality rate and other measures of coronavirus disease 2019 (COVID-19) severity. No serological test is 100% accurate, however, and the standard correction that epidemiologists use to adjust estimates relies on estimates of the test sensitivity and specificity often based on small validation studies. We have developed a fully Bayesian approach to adjust observed prevalence estimates for sensitivity and specificity. Application to a seroprevalence survey conducted in New York State in 2020 demonstrates that this approach results in more realistic—and narrower—credible intervals than the standard sensitivity analysis using confidence interval endpoints. In addition, the model permits incorporating data on the geographical distribution of reported case counts to create informative priors on the cumulative incidence to produce estimates and credible intervals for smaller geographic areas than often can be precisely estimated with seroprevalence surveys. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029262
Volume :
191
Issue :
4
Database :
Academic Search Index
Journal :
American Journal of Epidemiology
Publication Type :
Academic Journal
Accession number :
156109898
Full Text :
https://doi.org/10.1093/aje/kwab273