Back to Search Start Over

Nonlinear dynamics of bistable composite cantilever shells: An experimental and modelling study.

Authors :
Brunetti, Matteo
Mitura, Andrzej
Romeo, Francesco
Warminski, Jerzy
Source :
Journal of Sound & Vibration. May2022, Vol. 526, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

The nonlinear dynamics of cantilever bistable shells with asymmetric stable configurations is investigated. The possibility of maximizing the kinetic energy associated with snap-through motion offered by the considered cantilevered shells is pursued to enhance the sought-after energy harvesting capabilities. Through an experimental campaign under harmonic forcing the resonance scenarios around the stable configurations are analysed. The resulting nonlinear behaviour observed for high amplitude excitation is adopted to guide a reduced order model derivation. By combining the experimental response with two double-well oscillators derived from FE simulations, a double-well quintic oscillator capturing the observed softening behaviour is proposed. It involves a parameter identification phase in which a nonlinear damping model is introduced. A numerical continuation approach is adopted to discuss the local periodic solutions around each stable configuration in terms of resonance curves, bifurcation diagrams and basins of attraction. The global dynamics involving regular and chaotic dynamic regimes as well as snap-through motion is eventually described. • A novel cantilever composite shell with asymmetric double potential wells. • Experimental evidence of the exploitation of the bistable shell nonlinear dynamics. • Extracted kinetic energy maximization from the triggering of snap-through phenomena. • A nonlinear quintic Duffing–Holmes model for describing in- and cross-well dynamics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0022460X
Volume :
526
Database :
Academic Search Index
Journal :
Journal of Sound & Vibration
Publication Type :
Academic Journal
Accession number :
155778996
Full Text :
https://doi.org/10.1016/j.jsv.2022.116779