Back to Search Start Over

Pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling.

Authors :
Chen, Xiaoli
Wan, Weiguo
Ran, Qian
Ye, Tianxin
Sun, Yazhou
Liu, Zhangchi
Liu, Xin
Shi, Shaobo
Qu, Chuan
Zhang, Cui
Yang, Bo
Source :
European Journal of Pharmacology. Apr2022, Vol. 920, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

High levels of circulating catecholamines are related to raise risk of cardiac arrhythmias. In addition, our recent studies have suggested that pinocembrin could decrease the susceptibility to arrhythmias in several rat models, including chronic ischemic heart failure, myocardial infarction and depression. In this research, the effects of pinocembrin on ventricular fibrillation (VF) susceptibility were investigated in rats treated with isoproterenol (ISO) and further explored the possible mechanism. Cardiac remodeling was induced by intraperitoneally injection ISO (5 mg/kg) 7 days. Simultaneously, Rats were received pinocembrin (5 mg/kg) or saline by tail vein injection. The effects of pinocembrin were evaluated by electrocardiogram parameters, ventricular electrophysiological parameters, echocardiographic, western blot, ventricular histology, biochemical examinations. In vitro, we cultured H9C2 cardiomyocytes to further define the mechanisms. Compared with ISO group, pinocembrin remarkably decreased VF inducibility rate, attenuated the shortening of QT and corrected QT (QTc) interval, action potential duration (APD), ventricular effective refractory period (ERP), and increased the protein levels of Kv4.2 and Kv4.3 and Cav1.2 and decreased phosphorylated Ca2+ calmodulin-dependent kinase Ⅱ (p-CaMK Ⅱ). Pinocembrin also alleviated ventricular fibrosis, hypertrophy and increased expression of connexin protein 43 (Cx43). In addition, pinocembrin markedly downregulated levels of malondialdehyde (MDA), hydrogen peroxide (H 2 O 2), oxidized glutathione (GSSG) and increased the activity of superoxide dismutase (SOD) and glutathione (GSH) levels in circulation and cardiac tissue. Pinocembrin reduced the reactive oxygen species (ROS) levels. Furthermore, after treatment of pinocembrin the content of NADPH Oxidase-4 (NOX4) and NADPH Oxidase-2 (NOX2) was significantly lower and the level of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was significantly higher. In vitro, we found that Nrf2 inhibitor remarkably reduced the antioxidant effects of pinocembrin, which further demonstrated that the effect of pinocembrin was related to activation of Nrf2. Our data demonstrate that pinocembrin decreases ventricular electrical remodeling, ion remodeling, ventricular fibrosis, hypertrophy and suppresses isoproterenol-induced oxidative stress. The findings shown that pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling related to Nrf2/HO-1 pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00142999
Volume :
920
Database :
Academic Search Index
Journal :
European Journal of Pharmacology
Publication Type :
Academic Journal
Accession number :
155725536
Full Text :
https://doi.org/10.1016/j.ejphar.2022.174799