Back to Search
Start Over
Counting zeros of the Riemann zeta function.
- Source :
-
Journal of Number Theory . Jun2022, Vol. 235, p219-241. 23p. - Publication Year :
- 2022
-
Abstract
- In this article, we show that | N (T) − T 2 π log (T 2 π e) | ≤ 0.1038 log T + 0.2573 log log T + 9.3675 where N (T) denotes the number of non-trivial zeros ρ , with 0 < Im (ρ) ≤ T , of the Riemann zeta function. This improves the previous result of Trudgian for sufficiently large T. The improvement comes from the use of various subconvexity bounds and ideas from the work of Bennett et al. on counting zeros of Dirichlet L -functions. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ZETA functions
*ZERO (The number)
Subjects
Details
- Language :
- English
- ISSN :
- 0022314X
- Volume :
- 235
- Database :
- Academic Search Index
- Journal :
- Journal of Number Theory
- Publication Type :
- Academic Journal
- Accession number :
- 155557927
- Full Text :
- https://doi.org/10.1016/j.jnt.2021.06.032