Back to Search Start Over

Counting zeros of the Riemann zeta function.

Authors :
Hasanalizade, Elchin
Shen, Quanli
Wong, Peng-Jie
Source :
Journal of Number Theory. Jun2022, Vol. 235, p219-241. 23p.
Publication Year :
2022

Abstract

In this article, we show that | N (T) − T 2 π log ⁡ (T 2 π e) | ≤ 0.1038 log ⁡ T + 0.2573 log ⁡ log ⁡ T + 9.3675 where N (T) denotes the number of non-trivial zeros ρ , with 0 < Im (ρ) ≤ T , of the Riemann zeta function. This improves the previous result of Trudgian for sufficiently large T. The improvement comes from the use of various subconvexity bounds and ideas from the work of Bennett et al. on counting zeros of Dirichlet L -functions. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*ZETA functions
*ZERO (The number)

Details

Language :
English
ISSN :
0022314X
Volume :
235
Database :
Academic Search Index
Journal :
Journal of Number Theory
Publication Type :
Academic Journal
Accession number :
155557927
Full Text :
https://doi.org/10.1016/j.jnt.2021.06.032