Back to Search Start Over

Phase stability and hydrogen permeation performance of BaCo0·4Fe0·4Zr0·1Y0·1O3-δ ceramic membranes.

Authors :
Zhang, Dandan
Zhang, Xiaozhen
Zhou, Xiaojian
Song, Yawen
Jiang, Yuhua
Lin, Bin
Source :
Ceramics International. Apr2022, Vol. 48 Issue 7, p9946-9954. 9p.
Publication Year :
2022

Abstract

The dense ceramic membranes with mixed protonic-electronic conduction (MPEC) had received considerable attention due to their unique advantages for continuous hydrogen separation with high selectivity and good thermal stability. Herein, we reported a novel perovskite structure BaCo 0 · 4 Fe 0 · 4 Zr 0 · 1 Y 0 · 1 O 3-δ (BCFZY) ceramic membrane, which displayed a very high H 2 permeation flux and excellent stability at high temperatures. The electrical conductivity behavior and reduction characteristics of BCFZY under a H 2 -containing atmosphere were also evaluated. Furthermore, the BaCe 0 · 9 Y 0 · 1 O 3-δ -BCFZY composite catalytic layer was coated on the surface of BCFZY membrane to further improve its chemical stability and hydrogen permeability. The influence of the catalytic layer on the hydrogen permeation flux of BCFZY membrane was investigated. Surprisingly, the BaCe 0 · 9 Y 0 · 1 O 3-δ -BCFZY/BCFZY membrane presented a remarkable hydrogen flux of 1.02 mL min−1·cm−2 at 950 °C using 10% H 2 –90% N 2 as the feed gas, which was enhanced by 50% in comparison with the uncoated membrane with 0.65 mm thickness. The BCFZY and BaCe 0 · 9 Y 0 · 1 O 3-δ -BCFZY/BCFZY membranes exhibited sufficient stability during the continuous hydrogen separation operation at 900 °C for 100 h. The present work suggests that the multifunctional BCFZY-based membranes would be a promising candidate for highly efficient hydrogen separation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
48
Issue :
7
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
155458934
Full Text :
https://doi.org/10.1016/j.ceramint.2021.12.200