Back to Search Start Over

Infrared absorption by collisional CH4+X pairs, with X=He, H2, or N2.

Authors :
Buser, Michael
Frommhold, Lothar
Source :
Journal of Chemical Physics. 1/8/2005, Vol. 122 Issue 2, p024301. 7p. 1 Chart, 6 Graphs.
Publication Year :
2005

Abstract

Existing measurements of the collision-induced rototranslational absorption spectra of gaseous mixtures of methane with helium, hydrogen, or nitrogen are compared to theoretical calculations, based on refined multipole-induced and dispersion force-induced dipole moments of the interacting molecular pairs CH4–He, CH4–H2, and CH4–N2. In each case the measured absorption exceeds the calculations substantially at most frequencies. We present the excess absorption spectra, that is the difference of the measured and the calculated profiles, of these supramolecular CH4–X systems at various gas temperatures. The excess absorption spectra of CH4–X pairs differ significantly for each choice of the collision partner X, but show common features (spectral intensities and shape) at frequencies from roughly 200 to 500 cm-1. These excess spectra seem to defy modeling in terms of ad hoc exchange force–induced dipole components attempted earlier. We suggest that besides the dipole components induced by polarization in the electric molecular multipole fields and their gradients, and by exchange and dispersion forces, other dipole induction mechanisms exist in CH4–X complexes that presumably are related to collisional distortion of the CH4 molecular frame.© 2005 American Institute of Physics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
122
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
15543888
Full Text :
https://doi.org/10.1063/1.1829055