Back to Search Start Over

Mitigation of salinity buildup in hybrid flow-electrode capacitive deionization-osmotic membrane bioreactor for sludge anaerobic digestion.

Authors :
Qu, Yuetong
Pan, Yu
Wu, Linyu
Zhu, Hongtao
Source :
Chemical Engineering Journal. 2022 Part 2, Vol. 435, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

[Display omitted] • First attempt to remove salt from the anaerobic OMBR sludge by FCDI. • The hybrid FCDI-OMBR obtained a higher net energy gain. • Desalination performance of AC, CB, CNT as FCDI electrode material were compared. • Synergistic desalination between different electrode materials was found. Osmotic membrane bioreactors (OMBRs) for anaerobic digestion of waste sludge have many advantages, but salt accumulation in the feed solution is a major problem. In this study, the feasibility of using flow-electrode capacitive deionization (FCDI) to mitigate salinity buildup was investigated. Three types of carbon materials, i.e., activated carbon (AC), carbon black (CB), and carbon nanotubes (CNTs), were tested as flow-electrode materials in desalination via FCDI. The results showed that, the salt removal efficiency (SRE) of CNTs was 110% higher than that of AC. Addition of CB and CNTs to 5.0 wt% AC as conductive additives at concentrations of 0.5 or 1.0 wt% synergistically enhanced the FCDI desalination performance. Cyclic voltammetry, galvanostatic charge–discharge, and electrical impendence spectroscopy showed that use of a combination of 5.0 wt% AC and 1.0 wt% CNTs gave an excellent capacitive performance, and the highest SRE, fastest average salt adsorption rate (0.84 μg cm−2 s−1), and the highest charge efficiency (85.0%) were achieved. The optimal voltage and sludge flow rate for FCDI of real OMBR sludge were 1.5 V and 80 mL min−1, respectively. In comparison with a control OMBR, a hybrid FCDI-OMBR system showed many advantages such as slower salinity buildup, alleviation of inhibition by ammonia, lower production of soluble microbial products, greater volumetric methane production, and higher net energy gains. The proposed hybrid FCDI-OMBR system provides a novel and cost-effective approach to recovering resources and energy from waste sludge or other types of biomass. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
435
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
155427236
Full Text :
https://doi.org/10.1016/j.cej.2022.134885