Back to Search
Start Over
Elucidation of the excitation mechanism of Tb ions doped in AlxGa1−xN grown by OMVPE toward a wavelength-stable green emitter.
- Source :
-
Journal of Applied Physics . 2/21/2022, Vol. 131 Issue 7, p1-7. 7p. - Publication Year :
- 2022
-
Abstract
- The trivalent terbium ion (Tb3+) emits ultra-stable visible light consisting of blue, green, yellow, and red. Tb-doped semiconductors are candidates for novel full-color light sources in next-generation displays. Particularly, Tb-doped AlxGa1−xN (AlxGa1−xN:Tb) has attracted much attention for device applications. We present the luminescence properties of AlxGa1−xN:Tb grown by the organometallic vapor phase epitaxy. At 15 K, emission related to the 5D4–7FJ (J = 3, 4, 5, 6) transitions is observed for AlxGa1−xN:Tb with x ≥ 0.03. Thermal quenching of emission originating from the 5D4–7FJ transition is suppressed for higher Al compositions, and the luminescence is clearly observed at room temperature for AlxGa1−xN:Tb with x ≥ 0.06. The small thermal quenching is attributed to the enhanced excitation to the 5D4 level of Tb3+ ions via the 4f–5d transition and not due to the suppression of energy back-transfer paths in excited Tb3+ ions. Although additional emission originating from the 5D3–7FJ transitions is observed at 15 K for AlxGa1−xN:Tb with x ≥ 0.15, it is not observed at room temperature because the excitation to the 5D3 level via the 4f–5d transition is less efficient at high temperature. For Al0.15Ga0.85N:Tb, monochromatic green light is demonstrated using a SiO2/ZrO2 distributed Bragg reflector. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218979
- Volume :
- 131
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Journal of Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 155336217
- Full Text :
- https://doi.org/10.1063/5.0080269