Back to Search Start Over

Gap-com: general model selection criterion for sparse undirected gene networks with nontrivial community structure.

Authors :
Kuismin, Markku
Dodangeh, Fatemeh
Sillanpää, Mikko J.
Source :
G3: Genes | Genomes | Genetics. Feb2022, Vol. 12 Issue 2, p1-11. 11p.
Publication Year :
2022

Abstract

We introduce a new model selection criterion for sparse complex gene network modeling where gene co-expression relationships are estimated from data. This is a novel formulation of the gap statistic and it can be used for the optimal choice of a regularization parameter in graphical models. Our criterion favors gene network structure which differs from a trivial gene interaction structure obtained totally at random. We call the criterion the gap-com statistic (gap community statistic). The idea of the gap-com statistic is to examine the difference between the observed and the expected counts of communities (clusters) where the expected counts are evaluated using either data permutations or reference graph (the Erdös-Rényi graph) resampling. The latter represents a trivial gene network structure determined by chance. We put emphasis on complex network inference because the structure of gene networks is usually nontrivial. For example, some of the genes can be clustered together or some genes can be hub genes. We evaluate the performance of the gap-com statistic in graphical model selection and compare its performance to some existing methods using simulated and real biological data examples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21601836
Volume :
12
Issue :
2
Database :
Academic Search Index
Journal :
G3: Genes | Genomes | Genetics
Publication Type :
Academic Journal
Accession number :
155326147
Full Text :
https://doi.org/10.1093/g3journal/jkab437