Back to Search Start Over

Soil Moisture Estimation for Winter-Wheat Waterlogging Monitoring by Assimilating Remote Sensing Inversion Data into the Distributed Hydrology Soil Vegetation Model.

Authors :
Zhang, Xiaochun
Yuan, Xu
Liu, Hairuo
Gao, Hongsi
Wang, Xiugui
Source :
Remote Sensing. Feb2022, Vol. 14 Issue 3, p792. 1p.
Publication Year :
2022

Abstract

Waterlogging crop disasters are caused by continuous and excessive soil water in the upper layer of soil. In order to enable waterlogging monitoring, it is important to collect continuous and accurate soil moisture data. The distributed hydrology soil vegetation model (DHSVM) is selected as the basic hydrological model for soil moisture estimation and winter-wheat waterlogging monitoring. To handle the error accumulation of the DHSVM and the poor continuity of remote sensing (RS) inversion data, an agro-hydrological model that assimilates RS inversion data into the DHSVM is used for winter-wheat waterlogging monitoring. The soil moisture content maps retrieved from satellite images are assimilated into the DHSVM by the successive correction method. Moreover, in order to reduce the modeling error accumulation, monthly and real-time RS inversion maps that truly reflect local soil moisture distributions are regularly assimilated into the agro-hydrological modeling process each month. The results show that the root mean square errors (RMSEs) of the simulated soil moisture value at two in situ experiment points were 0.02077 and 0.02383, respectively, which were 9.96% and 12.02% of the measured value. From the accurate and continuous soil moisture results based on the agro-hydrological assimilation model, the waterlogging-damaged ratio and grade distribution information for winter-wheat waterlogging were extracted. The results indicate that there were almost no high-damaged-ratio and severe waterlogging damage areas in Lixin County, which was consistent with the local field investigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
3
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
155266712
Full Text :
https://doi.org/10.3390/rs14030792