Back to Search Start Over

Radiometric Assessment of ICESat-2 over Vegetated Surfaces.

Authors :
Neuenschwander, Amy
Magruder, Lori
Guenther, Eric
Hancock, Steven
Purslow, Matt
Source :
Remote Sensing. Feb2022, Vol. 14 Issue 3, p787. 1p.
Publication Year :
2022

Abstract

The ice, cloud, and land elevation satellite-2 (ICESat-2) is providing global elevation measurements to the science community. ICESat-2 measures the height of the Earth's surface using a photon counting laser altimeter, ATLAS (advanced topographic laser altimetry system). As a photon counting system, the number of reflected photons per shot, or radiometry, is a function primarily of the transmitted laser energy, solar elevation, surface reflectance, and atmospheric scattering and attenuation. In this paper, we explore the relationship between detected scattering and attenuation in the atmosphere against the observed radiometry for three general forest types, as well as the radiometry as a function of day versus night. Through this analysis, we found that ATLAS strong beam radiometry exceeds the pre-launch design cases for boreal and tropical forests but underestimates the predicted radiometry over temperate forests by approximately half a photon. The weak beams, in contrast, exceed all pre-launch conditions by a factor of two to six over all forest types. We also observe that the signal radiometry from day acquisitions is lower than night acquisitions by 10% and 40% for the strong and weak beams, respectively. This research also found that the detection ratio between each beam-pair was lower than the predicted 4:1 values. This research also presents the concept of ICESat-2 radiometric profiles; these profiles provide a path for calculating vegetation structure. The results from this study are intended to be informative and perhaps serve as a benchmark for filtering or analysis of the ATL08 data products over vegetated surfaces. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
3
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
155266707
Full Text :
https://doi.org/10.3390/rs14030787