Back to Search Start Over

Database Meets Artificial Intelligence: A Survey.

Authors :
Zhou, Xuanhe
Chai, Chengliang
Li, Guoliang
Sun, Ji
Source :
IEEE Transactions on Knowledge & Data Engineering. Mar2022, Vol. 34 Issue 3, p1096-1116. 21p.
Publication Year :
2022

Abstract

Database and Artificial Intelligence (AI) can benefit from each other. On one hand, AI can make database more intelligent (AI4DB). For example, traditional empirical database optimization techniques (e.g., cost estimation, join order selection, knob tuning, index and view selection) cannot meet the high-performance requirement for large-scale database instances, various applications and diversified users, especially on the cloud. Fortunately, learning-based techniques can alleviate this problem. On the other hand, database techniques can optimize AI models (DB4AI). For example, AI is hard to deploy in real applications, because it requires developers to write complex codes and train complicated models. Database techniques can be used to reduce the complexity of using AI models, accelerate AI algorithms and provide AI capability inside databases. Thus both DB4AI and AI4DB have been extensively studied recently. In this article, we review existing studies on AI4DB and DB4AI. For AI4DB, we review the techniques on learning-based configuration tuning, optimizer, index/view advisor, and security. For DB4AI, we review AI-oriented declarative language, AI-oriented data governance, training acceleration, and inference acceleration. Finally, we provide research challenges and future directions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10414347
Volume :
34
Issue :
3
Database :
Academic Search Index
Journal :
IEEE Transactions on Knowledge & Data Engineering
Publication Type :
Academic Journal
Accession number :
155108801
Full Text :
https://doi.org/10.1109/TKDE.2020.2994641