Back to Search Start Over

Change Detection in SAR Images via Ratio-Based Gaussian Kernel and Nonlocal Theory.

Authors :
Zhuang, Huifu
Hao, Ming
Deng, Kazhong
Zhang, Kefei
Wang, Xuesong
Yao, Guobiao
Source :
IEEE Transactions on Geoscience & Remote Sensing. Jan2022, Vol. 60 Issue 1, p1-15. 15p.
Publication Year :
2022

Abstract

Compared with the synthetic aperture radar (SAR) image processing theory based on local neighborhood, the nonlocal theory is not limited to a local neighborhood of an image and has great potential in change detection of SAR images. In this study, an approach using ratio-based nonlocal information (RNLI) is proposed for change detection in multitemporal SAR images. First, the RNLI is extracted from a spatial–temporal nonlocal neighborhood where the similarity of two pixels in the nonlocal neighborhood is well characterized by the proposed ratio-based Gaussian kernel function. The parameters of RNLI: noise level and matching window size are adaptively determined to avoid the uncertainty of the change detection result caused by user experience. Second, the difference image is generated by using the RNLI and the ratio operator. Finally, the change map is obtained by segmenting the difference image with a threshold. Experiments conducted on two real datasets and two simulated datasets showed that the proposed method performed better than the other advanced change detection methods, which can better retain the edge information of the changed area while reducing the overall error of the change detection results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
60
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
154824277
Full Text :
https://doi.org/10.1109/TGRS.2021.3083364