Back to Search Start Over

Radar Echo Spatiotemporal Sequence Prediction Using an Improved ConvGRU Deep Learning Model.

Authors :
He, Wei
Xiong, Taisong
Wang, Hao
He, Jianxin
Ren, Xinyue
Yan, Yilin
Tan, Linyin
Source :
Atmosphere. Jan2022, Vol. 13 Issue 1, p88-88. 1p.
Publication Year :
2022

Abstract

Precipitation nowcasting is extremely important in disaster prevention and mitigation, and can improve the quality of meteorological forecasts. In recent years, deep learning-based spatiotemporal sequence prediction models have been widely used in precipitation nowcasting, obtaining better prediction results than numerical weather prediction models and traditional radar echo extrapolation results. Because existing deep learning models rarely consider the inherent interactions between the model input data and the previous output, model prediction results do not sufficiently meet the actual forecast requirement. We propose a Modified Convolutional Gated Recurrent Unit (M-ConvGRU) model that performs convolution operations on the input data and previous output of a GRU network. Moreover, this adopts an encoder–forecaster structure to better capture the characteristics of spatiotemporal correlation in radar echo maps. The results of multiple experiments demonstrate the effectiveness of the proposed model. The balanced mean absolute error (B-MAE) and balanced mean squared error (B-MSE) of M-ConvGRU are slightly lower than Convolutional Long Short-Term Memory (ConvLSTM), but the mean absolute error (MAE) and mean squared error (MSE) of M-ConvGRU are 6.29% and 10.25% lower than ConvLSTM, and the prediction accuracy and prediction performance for strong echo regions were also improved. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734433
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
154802702
Full Text :
https://doi.org/10.3390/atmos13010088